Впишите правильный ответ.
Найдите точку максимума функции `y=ln(x+3)^7−7x−9`.
-2
Ответ
Чтобы найти наибольшее значение функции , необходимо представлять, какая у нее форма, и сделать это можно с помощью производной, ведь производная отражает динамику функции, а в случае, если производная равна 0, это точка экстремума функции (мин или макс).
Точка максимума - это абсцисса точки, в которой функция достигает максимума.
Итак, найдем производную.
`y=ln(x+3)^7−7x−9`
`y´=7*1/(x+3)-7`
Теперь найдем значение при y´=0
`0=7*1/(x+3)-7`
`7*1/(x+3)=7` |:7
`1/(x+3)=1`
`x+3=1`
`x=-2`
Собственно нашли одну точку экстремума. Если это точка минимума, то максимума нет, а значит задание было без смысла, значит это все же точка максимума.
Хотя проверить не проблема. (-3 выколотая точка, возьмем где-то между ней и точкой экстремума и вторую с "другой стороны по x" экстремума)
`y´(-2,5)=7*1/(x+3)-7` будет положительная, так как все что в знаменателе меньше 1, а у нас 0,5 будет давать больше 1 для дроби, а значит 7*на что-то большее единицы минус 7 будет положительное.
`y´(0)=7*1/(x+3)-7` будет отрицательная, опять же исходя из логики рассуждения в предыдущем примере
То есть до точки экстремума был рост функции, а затем убывание, значит у нас найдена точкам макс.
Ответ: -2
Номер: 285552