Прогрессиями в школах не очень заморачиваются, поэтому дети делают в этом задании на ОГЭ много ошибок. На самом деле все не так сложно как кажется, В крайнем случае, если не знаете, как вычислить по формуле (она, кстати, будет у вас в справочных материалах к ОГЭ), можно решить эти задачки на прогрессии, или числовые последовательности, логически. Для вас ВСЕ ПРОТОТИПЫ прогрессий из ОБЗ ФИПИ. В окно тренажера вводите ответ без пробелов и единиц измерения.
14. Впишите правильный ответ.
В ходе биологического эксперимента в чашку Петри с питательной средой поместили колонию микроорганизмов массой 13 мг. За каждые 30 минут масса колонии увеличивается в 3 раза. Найдите массу колонии микроорганизмов через 90 минут после начала эксперимента. Ответ дайте в миллиграммах.
351
bn=b1*qn-1
b4=13*33=351 мг
Ответ: 351
Другой вариант решения.
Через 30 минут масса колонии станет 13*3=39,
через 60 минут — 39*3=117 ,
через 90 минут масса станет 117*3 = 351 мг.
Ответ: 351
Номер: A3E245
14. Впишите правильный ответ.
У Тани есть теннисный мячик. Она со всей силы бросила его об асфальт. После первого отскока мячик подлетел на высоту 360 см, а после каждого следующего отскока от асфальта подлетал на высоту в три раза меньше предыдущей. После какого по счёту отскока высота, на которую подлетит мячик, станет меньше 15 см?
4
Изменение высоты отскока мячика представляет собой геометрическую прогрессию с первым членом b1=360 см и знаменателем q=1/3. По формуле n-ого члена bn=b1*qn-1 найдем, после какого по счету отскока высота, на которую подлетит мячик, станет меньше 15 см.
bn < 15 ⇔ b1qn-1 < 15 ⇔ 360 * (1/3)n-1 < 15 ⇔ (1/3)n-1 < 1/24
Следовательно, n=4 — минимальное целое значение, которое удовлетворяет неравенство, или счет отскока, после которого высота, на которую подлетит мячик, станет меньше 15 см.
Ответ: 4
Решение на пальцах.
С каждым отскоком высота мяча снижается. Здесь прошу обратить ваше внимание, что после первого отскока высота мяча 360 см. Получим:
после первого отскока - 360
после второго 360 : 3 = 120
после третьего 120 : 3 = 40
после четвертого 40 : 3 = 13 < 15
Ответ: 4
Номер: 4C0E02
14. Впишите правильный ответ.
Камень бросают в глубокое ущелье. При этом в первую секунду он пролетает 7 метров, а в каждую следующую секунду на 10 метров больше, чем в предыдущую, до тех пор, пока не достигнет дна ущелья. Сколько метров пролетит камень за первые шесть секунд?
192
1я секунда - 7 м
2 - 17
3 - 27
4 - 37
5 - 47
6 - 57
7 + 17 + 27 + 37 + 47 + 57 = 192 м
Ответ: 192
Решение по формулам.
an =a1 + d(n-1)
a4 =7 + 10(6-1)=57 м пролетит камень за шестую секунду
$S_n=\frac{a_1+a_n}2n$
Sn=(7+57)6=192
2
Ответ: 192
Номер: 731CD5
14. Впишите правильный ответ.
При проведении опыта вещество равномерно охлаждали в течение 10 минут. При этом каждую минуту температура вещества уменьшалась на 6° C. Найдите температуру вещества (в градусах Цельсия) через 4 минуты после начала проведения опыта, если его начальная температура составляла − 7° C .
-31
Заметим, что значения температуры вещества представляют собой арифметическую прогрессию с разностью −6. При этом температура вещества в начальный момент времени будет первым членом прогрессии, температура вещества через одну минуту — вторым членом, а температура вещества через 4 минуты — пятым членом прогрессии, следовательно, она может быть найдена по формуле
an=a1 + d (n - 1)
a5=a1 + d (5 - 1) = -7 + (-6) * 4= -31.
Ответ: -31
Другой вариант решения.
Через минуту температура вещества станет - 7 - 6 = -12 , через две минуты — - 7 - 12 =-19 , ..., через 4 минуты температура вещества станет - 7 - 24 = -31 оC.
Ответ: -31
Номер: AC63F5
14. Впишите правильный ответ.
В амфитеатре 10 рядов. В первом ряду 25 мест, а в каждом следующем на 3 места больше, чем в предыдущем. Сколько мест в восьмом ряду амфитеатра?
46
Число мест в ряду представляет собой арифметическую прогрессию с первым членом a1=25 и разностью d=3. Член арифметической прогрессии с номером n может быть найден по формуле
an =a1 + d(n-1)
Необходимо найти a8, имеем:
a8=a1+d(8-1)=25+3*7=46
Ответ: 46
Другой вариант решения.
Такую задачу можно решить и на пальцах, не зная формулы (на ОГЭ ведь нужен только ответ).
1 ряд - 25, 2 - 28, 3 - 31, 4 - 34, 5 - 37, 6 - 40, 7 - 43, 8 - 46.
Ответ: 46
Номер: 1F7343
14. Впишите правильный ответ.
В ходе распада радиоактивного изотопа его масса уменьшается вдвое каждые 7 минут. В начальный момент масса изотопа составляла 640 мг. Найдите массу изотопа через 42 минуты. Ответ дайте в миллиграммах.
10
Через 7 минут масса изотопа станет 640 * 1/2,
через 14 минут - 640*(1/2)2 ,
...,
через 42 минуты масса станет
640*(1/2)6 = 640/64=10 мг
Ответ: 10
Другой вариант решения.
Заметим, что массы изотопа в заданные моменты времени представляют собой геометрическую прогрессию со знаменателем q=1/2. Масса изотопа в начальный момент времени является первым членом геометрической прогрессии b1, масса изотопа через 7 минут — вторым членом прогрессии, а масса изотопа через 42 минуты − седьмым членом прогрессии и может быть определена по формуле b7=b1*q7-1 .
b7=640*(1/2)6=640/64=10 мг
Ответ: 10
Номер: ACC044
14. Впишите правильный ответ.
В амфитеатре 13 рядов. В первом ряду 17 мест, а в каждом следующем на 2 места больше, чем в предыдущем. Сколько всего мест в амфитеатре?
377
a1=17, d=2
an =a1 + d(n-1)
a13=17 + 2(13-1)=41
$S_n=\frac{a_1+a_n}2n$
$S_{13}=\frac{17+41}2\ast13=377$
Ответ: 377
Номер: 4C08B1
14. Впишите правильный ответ.
В амфитеатре 14 рядов, причём в каждом следующем ряду на одно и то же число мест больше, чем в предыдущем. В пятом ряду 27 мест, а в восьмом ряду 36 мест. Сколько мест в последнем ряду амфитеатра?
54
Число мест в ряду представляет собой арифметическую прогрессию с пятым членом a5=27 и восьмым a8=36,
an =a1 + d(n-1) ⇒ разность равна $d=\frac{a_n-a_1}{n-1}$
можно заменить a1 на a5, но тогда и единицу в знаменателе не забываем заменить на 5.
$d=\frac{a_8-a_5}{8-5}=\frac{36-27}3=3$
an =a1 + d(n-1) ⇒ a1 = an - d(n-1)
a1 = a5 - d (n - 1) = 27 - 3 * 4 = 15.
По формуле n-го члена an= a1 + d * (n - 1) найдем 14-й член прогрессии:
a14= 15 + 3 * (14 - 1) = 54.
Ответ: 54
Номер: A55400
14. Впишите правильный ответ.
На клетчатой бумаге с размером клетки 1×1 нарисована «змейка», представляющая из себя ломаную, состоящую из чётного числа звеньев, идущих по линиям сетки. На рисунке изображён случай, когда последнее звено имеет длину 10. Найдите длину ломаной, построенной аналогичным образом, последнее звено которой имеет длину 190.
36290
Длина змейки, изображенной на рисунке, составляет 1 + 1 + 2 + 2 + 3 + ... + 9 + 9 + 10 + 10 и представляет арифметическую прогрессию, члены которой учтены 2 раза.
Формула суммы арифметической прогрессии:
`S_n=(a_1+a_n)/2n`
Первый член a1=1 (начало змейки), разность d=1, nпоследнего члена=10, an=10 (видим, что нумерация звеньев совпадает с длиной).
С учетом того, что в змейке члены прогрессии нужно учесть 2 раза, длина ломаной будет соответствовать 2Sn:
2Sn=(a1+an)*n
Поскольку a1=1; an=длине последнего звена; n=длине последнего звена,
получается, что умножаем длину последнего звена на число на 1 больше этой длины.
Найдем сумму арифметической прогрессии для змейки, последнее звено которой 190
2Sn=(a1+a190)*190=(1+190)*190=191*190=36290
Ответ: 36290
Лайфхак:
умножаем длину последнего звена на число на 1 больше этой длины.
В нашей задаче это 190 * 191 = 36290
Ответ: 36290
Номер: 6A7CF2
22. Впишите правильный ответ.
В кафе есть только квадратные столики, за каждый из которых могут сесть 4 человека. Если сдвинуть два квадратных столика, то получится стол, за который могут сесть 6 человек. На рисунке изображён случай, когда сдвинули 3 квадратных столика вдоль одной линии. В этом случае получился стол, за который могут сесть 8 человек. Сколько человек может сесть за стол, который получится, если сдвинуть 16 квадратных столиков вдоль одной линии?
34
Постепенное соединение столиков представляет собой арифметическую прогрессию с первым членом
a1=4, a2=6 и a3=8, разность d=2.
По формуле n-го члена an= a1 + d * (n - 1) найдем 16 член прогрессии:
a16= 4 + 2 * (16 - 1) = 34.
Ответ: 34
Задачу можно решить иначе.
Если сдвинуть столики вдоль одной линии, то за каждый столик, стоящий на конце линии (таких столиков всего два), смогут сесть по три человека, а за каждый из остальных столиков — по два человека. Следовательно, всего за столики смогут сесть
2 * 3 + (16 - 2) * 2 = 6 + 28 = 34 человека.
Ответ: 34
Номер: 5A3DF7
14. Впишите правильный ответ.
В ходе бета-распада радиоактивного изотопа А каждые 8 минут половина его атомов без потери массы преобразуются в атомы стабильного изотопа Б. В начальный момент масса изотопа А составляла 160 мг. Найдите массу образовавшегося изотопа Б через 40 минут. Ответ дайте в миллиграммах.
155
Масса образовавшегося изотопа Б равна разности массы исходного вещества и массы оставшегося изотопа А. Каждые 8 минут остается половина атомов изотопа А, следовательно, последовательность значений масс изотопа А представляет собой геометрическую прогрессию с первым членом b1=160 и знаменателем q=1/2. Найдем массу изотопа А через 40 минут.
40:8=5, да еще нужно учесть начальное значение, значит n=6
`b_6=b_1*(1/2)^(6-1)=160*1/32=5` мг осталось от изотопа А, а все остальное перешло к изотопу Б.
Тогда масса образовавшегося изотопа Б составит 160 − 5 = 155 мг.
Ответ: 155
Объяснение на пальцах.
Это почему-то самая сложная для понимания задача. Ну да, предметная область выбрана из физики, химии. Но давайте опираться на великий и могучий русский язык. Что-то распадается, но в отличие от других задач с изотопами, атомы не исчезают, а переходят в другое место и там остаются. Без потери массы значит: сколько ушло из А, столько пришло в Б. А слово «стабильный» помогает нам понять, что там они и остаются.
Т.к. атомы уходят каждые 8 минут, то нужно будет делить изотоп А пополам 40 : 8 = 5 раз. Получим:
1. 160 : 2 = 80
2. 80 : 2 = 40
3. 40 : 2 = 20
4. 20 : 2 = 10
5. 10 : 2 = 5
А вот теперь самое главное. Что означают эти числа?
1 способ:
Уменьшая массу изотопа А в два раза, получили, что после 40 минут у него осталось 5 мг атомов. Тогда все остальные «ушли» в Б:
160 – 5 = 155.
2 способ:
Полученные числа также говорят о том, сколько атомов «уходило» в Б каждые 8 минут. В изотопе Б они каждый раз добавлялись к тем, что уже там были, тогда будем складывать эти массы:
80 + 40 + 20 +10 + 5 = 155.
Ответ: 155
Номер: E8F846