22. Дайте развернутый ответ.
Постройте график функции
`y=((x^2+0,25)(x+1))/(-1-x)`
Определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
Впишите наибольший k
1,25
Решение
Преобразуем выражение:
`y=((x^2+0,25)(x+1))/(-1-x)=(-(x^2+0,25)(x+1))/(1+x)=-x^2-0,25` при условии, что x ≠ −1.
Построим параболу `y=−x^2−0,25` с «выколотой» точкой (−1; −1,25). Ветви параболы направлены вниз, вершина — в точке (0; − 0,25).
Прямая y = kx имеет с параболой ровно одну общую точку, если она проходит через точку (−1; −1,25), то есть `−1,25=k*(-1)` или касается параболы, т.е. уравнение `−x^2−0,25=kx` должно иметь один корень.
Из `−1,25=k*(-1)` следует, что `k=1,25`
Дискриминант уравнения `x^2+kx+0,25=0` равен `k^2−1`, и он равен нулю при k = −1 или k =1.
Получаем, что при k = 1,25, k = −1 или k =1 прямая y = kx имеет с графиком функции `y=((x^2+0,25)(x+1))/(-1-x)` ровно одну общую точку.
Ответ: k=1,25 ; k=−1; k=1
Для проверки введите 1,25
Номер: E4E1A2