Теоретические основы химии. Периодическая система химических элементов Д.И. Менделеева. Физический смысл Периодического закона Д.И. Менделеева. Причины и закономерности изменения свойств элементов и их соединений по периодам и группам. Закономерности в изменении свойств простых веществ, водородных соединений, высших оксидов и гидроксидов

Закономерности изменения химических свойств элементов и их соединений по периодам и группам периодической таблицы химических элементов

Периодический закон изменения свойств химических элементов был открыт в 1869 году великим русским ученым Д.И. Менделеевым и в первоначальной формулировке звучал следующим образом:

«… свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса».

Атомным весом в те времена называли атомную массу химического элемента. В то время не было ничего известно о реальном строении атома и господствовала идея о его неделимости, в связи с чем Д.И. Менделеев сформулировал свой закон периодичного изменения свойств химических элементов и образованных ими соединений исходя из массы атомов. Позже после установления строения атома закон был сформулирован в следующей формулировке актуальной и в настоящий момент.

Свойства атомов химических элементов и образованных ими простых веществ находятся в периодической зависимости от зарядов ядер их атомов.

Графическим изображением периодического закона Д.И. Менделеева можно считать периодическую таблицу химических элементов, впервые построенную Менделеевым, но несколько усовершенствованную и доработанную последующими исследователями. Фактически используемый в настоящее время вариант таблицы Менделеева отражает современные представления и конкретные знания о строении атомов разных химических элементов.

Рассмотрим более детально современный вариант периодической системы химических элементов:

В таблице Менделеева можно видеть строки, называемые периодами; всего их насчитывается 7. Фактически номер периода отражает число энергетических уровней, на которых расположены электроны в атоме химического элемента.

Например, такие элементы, как фосфор, сера и хлор, обозначаемые символами P, S, и Cl, находятся в третьем периоде. Это говорит о том, что электроны в этих атомах расположены на трех энергетических уровнях или, если говорить более упрощенно, образуют трехслойную электронную оболочку вокруг ядер.

Каждый период таблицы, кроме первого, начинается щелочным металлом и заканчивается благородным (инертным) газом.

Все щелочные металлы имеют электронную конфигурацию внешнего электронного слоя ns1, а благородные газы — ns2np6, где n – номер периода, в котором находится конкретный элемент. Исключением из благородных газов является гелий (He) с электронной конфигурацией 1s2 .

Помимо периодов, таблица делится на вертикальные столбцы — группы, их 8. Большинство химических элементов имеет равное номеру группы количество валентных электронов (валентными электронами в атоме называются те электроны, которые принимают участие в образовании химических связей).

В свою очередь, каждая группа в таблице делится на две подгруппыглавную и побочную.

Для элементов главных групп количество валентных электронов всегда равно номеру группы.
Пример: у атома хлора, расположенного в третьем периоде в главной подгруппе VII группы, количество валентных электронов равно семи:  17Cl=1s22s22p63s23p5 - валентные электроны

Элементы побочных групп имеют в качестве валентных электроны внешнего уровня или нередко электроны d-подуровня предыдущего уровня.
Пример: хром, находящийся в побочной подгруппе VI группы, имеет шесть валентных электронов – 1 электрон на 4s-подуровне и 5 электронов на 3d-подуровне:  24Cr=1s22s22p63s23p64s13d5 - валентные электроны

Общее количество электронов в атоме химического элемента = его порядковому номеру. Другими словами, общее количество электронов в атоме с номером элемента возрастает. Тем не менее, количество валентных электронов в атоме изменяется не монотонно, а периодически – от 1-го у атомов щелочных металлов до 8-ми для благородных газов.

Таким образом, причина периодического изменения каких-либо свойств химических элементов связана с периодическими изменениями в строении электронных оболочек.

При движении вниз по подгруппе атомные радиусы химических элементов возрастают ввиду увеличения количества электронных слоев. Тем не менее, при движении по одному ряду слева направо, то есть с ростом количества электронов для элементов, расположенных в одном ряду, происходит уменьшение радиуса атома. Данный эффект объясняется тем, что при последовательном заполнении одной электронной оболочки атома ее заряд, как и заряд ядра, увеличивается, что приводит к усилению взаимного притяжения электронов, в результате чего электронная оболочка «поджимается» к ядру:

Вместе с тем, внутри одного периода с ростом количества электронов происходит уменьшение радиуса атома, а также возрастает энергия связи каждого электрона внешнего уровня с ядром. Это означает, что, например, ядро атома хлора будет удерживать электроны своего внешнего уровня намного сильнее, чем ядро атома натрия единственный электрон внешнего электронного уровня. Более того, при столкновении атома натрия и хлора хлор «отберет» единственный электрон у атома натрия, то есть электронная оболочка хлора станет такой же, как у благородного газа аргона, а у натрия — такой же, как у благородного газа неона. Способность атома какого-либо химического элемента оттягивать на себя «чужие» электроны при столкновении с атомами другого химического элемента называется электроотрицательностью. Более подробно про электроотрицательность будет рассказано в главе, посвященной химическим связям, но нужно отметить, что, электроотрицательность, как и многие другие параметры химических элементов, также подчиняется периодическому закону Д.И. Менделеева. Внутри одной подгруппы химических элементов электроотрицательность убывает, а при движении по ряду одного периода вправо электроотрицательность возрастает.

Есть полезный мнемонический прием, позволяющий восстановить в памяти то, как меняются те или иные свойства химического элемента. Заключается он в следующем. Представим себе циферблат обычных круглых часов. Если его центр поместить в правый нижний угол таблицы Д.И. Менделеева, то свойства химических элементов будут однообразно изменяться при движении по ней вверх и вправо (по часовой стрелке) и противоположно вниз и влево (против часовой стрелки):

Попробуем применить данный прием к размеру атома. Допустим, что вы точно помните, что при движении вниз по подгруппе в таблице Д.И. Менделеева радиус атома увеличивается, поскольку растет число электронных оболочек, но напрочь забыли, как изменяется радиус при движении влево и вправо.

Тогда нужно действовать следующим образом. Поставьте большой палец правой руки в правый нижний угол таблицы. Движение вниз по подгруппе будет совпадать с движением указательного пальца против часовой стрелки, как и движение влево по периоду, то есть радиус атома при движении влево по периоду, как и при движении вниз по подгруппе, увеличивается.

Аналогично и для других свойств химических элементов. Точно зная, как изменяется то или иное свойство элемента при движении вверх-вниз, благодаря данному методу вы сможете восстановить в памяти то, как меняется это же свойство при движении влево или вправо по таблице.


Общая характеристика металлов IА–IIIА групп в связи с их положением в Периодической системе химических элементов Д.И. Менделеева и особенностями строения их атомов

Элементы IA группы

В IA группу (главная подгруппа первой группы) таблицы Менделеева вхо­дят металлы — литий Li, натрий Na, калий К, рубидий Rb, цезий Cs и франций Fr. Традиционно, данные элементы называют щелочными металлами (ЩМ), так как их простые вещества образуют при взаимодействии с водой едкие щелочи. Последний из известных представителей группы щелочных металлов (Fr) является радио­активным элементом, в связи с чем его химические свойства изучены недостаточно: период полураспада его наиболее долгоживущего изотопа 223Fr составляет всего лишь около 22 мин.

Электронные формулы, а также некоторые свойства щелочных металлов представлены в таблице ниже:

Свойство Li Na К Rb Cs Fr
Заряд ядра Z 3 11 19 37 55 87
Электронная конфигурация в основном состоянии [He]2s1 [Ne]3s1 [Аr]4s1 [Kr]5s1 [Хе]6s1 [Rn]7s1
Металлический радиус rмет, нм 0,152 0,186 0,227 0,248 0,265 0,270
Ионный радиус rион*, нм 0,074 0,102 0,138 0,149 0,170 0,180
Радиус гидратированного иона,rион , нм 0,340 0,276 0,232 0,228 0,228
Энергия ионизации, кДж/моль: I1 I2 520,2 7298 495,8 4562 418,8 3052 403,0 2633 375,7 2234 (380) (2100)
Электроотрицательность 0,98 0,93 0,82 0,82 0,79 0,70

При движении вниз по IA группе возрастает радиус атомов металлов (rмет), что, собственно,  характерно для любых элементов всех главных подгрупп. Относительно малое увеличение радиуса при переходе от K к Rb и далее к Cs обусловлено заполнением 3d- и 4d-подуровней соответственно.

Ионные радиусы ЩМ существенно меньше металлических, что связано с потерей единственного валентного электрона. Они также зако­номерно возрастают от Li+ к Cs+. Размеры же гидратированных катионов изме­няются в противоположном направлении, что объясняется в рамках простей­шей электростатической модели. Наименьший по размеру ион Li+ лучше катионов остальных щелочных металлов притягивает к себе полярные молекулы воды, образуя наиболее толстую гидратную оболочку. Исследования показали, что в водном растворе катион лития Li+ окружен 26 моле­кулами воды, из которых только 4 находятся в непосредственном контакте с ионом лития (первой координационной сфере). По этой причине многие соли лития, например, хлорид, перхлорат и сульфат, а также гидроксид выделяются из водных растворов в виде кристаллогидратов. Хлорид LiCl·Н2O теряет воду при температуре 95 °С, LiOH·Н2O — при 110°С, а LiClO4·Н2O — только при температуре выше 150°С. С увеличением ионного радиуса катиона щелочного металла сила его электростатического взаимодействия с молекулами воды ослабевает, что приводит к снижению толщины гидратной оболочки и, как следствие, радиуса гидратированного иона [М(Н2O)n] (где n = 17, 11, 10, 10 для М+ = Na+, К+, Rb+, Cs+ соответственно).

Внешний энергетический уровень атома ЩМ содержит один единственный электрон, который слабо связан с ядром, о чем говорят низкие значения энер­гии ионизации I1. Атомы щелочных металлов легко ионизируются с образова­нием катионов М+, входящих в состав практически всех химических соединений этих элементов. Значения I2 для всех щелочных металлов настолько высоки, что в реально осуществимых условиях ион М2+ не образуется. Электроотрицатель­ность щелочных элементов мала, их соединения с наиболее электроотрица­тельными элементами (хлор, кислород, азот)имеют ионное строение, как минимум в кристаллическом состоянии.

Маленький радиус иона Li+ и высокая плотность заряда, являются причиной того, что соединения лития оказываются схожими по свойствам аналогичным соединениям магния (диагональное сходство) и в то же время отличаются от соединений остальных ЩМ.

Элементы IIA группы

В IIA группу Периодической системы элементов входят бериллий Ве, магний Мg и четыре щелочноземельных металла (ЩЗМ): кальций Са, стронций Sr, барий Ва и радий Ra, оксиды которых, раньше называемые «землями», при взаимодействии с водой образуют щелочи. Радий — радиоактивный элемент (α-распад, период полураспада примерно 1600 лет).

Электронная конфигурация и некоторые свойства элементов второй группы приведены в таблице ниже:

Свойство Be Mg Ca Sr Ba Ra
Заряд ядра Z 4 12 20 38 56 88
Электронная конфигурация в основном состоянии [He]2s2 [Ne]3s2 [Ar]4s2 [Kr]5s2 [Xe]6s2 [Rn]7s2
Металлический радиус rмет, нм 0,112 0,160 0,197 0,215 0,217 0,223
Ионный радиус rион*, нм 0,027 0,72 0,100 0,126 0,142 0,148
Энергия ионизации, кДж/моль:

 

I1

I2

I3

899,5 1757 14850 737,7 1451 7733 589,8 1145 4912 549,5 1064 4138 502,8 965 3619 509,3 979 3300
Электроотрицательность 1,57 1,31 1,00 0,95 0,89 0,90

По электронному строению атомов элементы второй группы близки щелочным металлам. Они имеют конфигурацию благородного газа, дополненную двумя s-электронами на внешнем уровне. В то же время от элементов первой группы они отличаются более высокими значениями энергии ионизации, убывающими в ряду Ве—Мg—Са—Sr— Ва. Эта тенденция нарушается при переходе от бария к радию: повышениe П и І, для Rа по сравнению с Ва объясняется эффектом инертной 6s2-пары.

Следует отметить, что в то время как для щелочных металлов характерна значительная разница между I1 и I2 для элементов второй группы подобный скачок наблюдается между I2 и I3. Именно поэтому щелочные металлы в сложных веществах проявляют только степень окисления +1, а элементы второй группы +2. Наличие единственной положительной степени окисления и невозможность восстановления ионов M2+ в водной среде придает большое сходство всем металлам s-блока.

Изменение свойств по группе следует общим закономерностям, рассмотренным на примере щелочных металлов. Элемент второго периода бериллий, подобно элементу первой группы литию, значительно отличается по своим свойствам от других элементов второй группы. Так, ион Be2+ благодаря чрезвычайно малому ионному радиусу (0,027 нм), высокой плотности заряда, большим значениям энергий атомизации и ионизации оказывается устойчивым лишь в газовой фазе при высоких температурах. Поэтому химическая связь в бинарных соединениях бериллия даже с наиболее электроотрицательными элементами (кислород, фтором) обладает высокой долей ковалентности. Химия водных растворов бериллия также имеет свою специфику: в первой координационной сфере бериллия могут находиться лишь четыре лиганда ([Be(H2O)4]2+, (Bе(OH)4]), что связано с малым ионным радиусом металла и отсутствием d-орбиталей.

Щелочноземельные металлы (Са, Sr, Ва, Ra) образуют единое семейство элементов, в пределах которого некоторые свойства (энергия гидратации, растворимость и термическая устойчивость солей) меняются монотонно с увеличением ионного радиуса, а многие их соединения являются изоморфными.

По ИЮПАК Be и Mg относят к щелочноземельным металлам, но в рамках школьной программы и ЕГЭ это НЕ ЩЗМ.

Элементы IIIA группы

Элементы IIIA группы: бор В, алюминий Al, галлий Ga, индий In и таллий Tl — имеют мало стабильных изотопов, что характерно для атомов с нечетными порядковыми номерами. Электронная конфигурация внешнего энергетического уровня в основном состоянии ns21 характеризуется наличием одного неспаренного электрона. В возбужденном состоянии элементы IIIA группы содержат три неспаренных электрона, которые, находясь в sp2-гибридизации, принимают участие в образовании трех ковалентных связей. При этом у атомов остается одна незанятая орбиталь. Поэтому многие ковалентные соединения элементов IIIA группы являются акцепторами электронной пары (кислоты Льюиса), т.е. могут образовывать четвертую ковалентную связь по донорно-акцепторному механизму, создавая которую, они изменяют геометрию своего окружения — она из плоской становится тетраэдрической (состояние sp3-гибридизации). Бор сильно отличается по свойствам от других элементов IIIA группы. Он является единственным неметаллом, химически инертен и образует ковалентные связи со фтором, азотом, углеродом и т.д. Химия бора более близка химии кремния, в этом проявляется Диагональное сходство. У атомов алюминия и его тяжелых аналогов появляются вакантные d-орбитали, возрастает радиус атома. Галлий, индий и таллий расположены в Периодической системе сразу за металлами d-блока, поэтому их часто называют постпереходными элементами. Заполнение d-оболочки сопровождается последовательным сжатием атомов, в 3d-pяду оно оказывается настолько сильным, что нивелирует возрастание радиуса при появлении четвертого энергетического уровня. В результате d-сжатия ионные радиусы алюминия и галлия близки, а атомный радиус галлия даже меньше, чем алюминия.

Для таллия, свинца, висмута и полония наиболее устойчивы соединения со степенью окисления +1, +2, +3, +4 соответственно.

Свойство B Al Ga In Tl
Заряд ядра Z 5 13 31 49 81
Электронная конфигурация в основном состоянии [He]2s22p1 [Ne]3s23p1 [Ar]3d104s24p1 [Kr]4d105s25p1 [Xe]4f145d106s26p1
Атомный радиус, нм 0,083 0,143 0,122 0,163 0,170
Энергия ионизации, кДж/моль: I1 I2 I3 801 2427 3660 577 1817 2745 579 1979 2963 558 1821 2704 589 1971 2878
Электроотрицательность 2,04 1,61 1,81 1,78 2,04

Для соединений элементов IIIA группы наиболее характерна степень окисления +3. В ряду бор-алюминий-галлий-индий-таллий устойчивость таких соединений уменьшается, а устойчивость соединений со степенью окисления +1, напротив, увеличивается. Энергия связи М—Hal в галогенидах последних при переходе от легких к более тяжелым элементам М уменьшаются, амфотерные свойства оксидов и гидроксидов смещаются в сторону большей основности, склонность катионов к гидролизу (взаимодействию с водой) ослабевает.

Химия индия и особенно галлия вообще очень близка химии алюминия. Соединения этих металлов в низших степенях окисления (Ga2O, Ga2S, InCl и др.) в водных растворах диспропорционируют. Для таллия состояние +1, напротив, является наиболее устойчивым из-за инертности электронной пары 6s2.


Характеристика переходных элементов (меди, цинка, хрома, железа) по их положению в периодической системе химических элементов Д.И. Менделеева и особенностям строения их атомов

Медь Cu, цинк Zn, железо Fe и хром Сr относятся к переходным металлам, являются представителями d-элементов. В таблице Менделеева находятся в побочных (Б) подгруппах.

Медь

Медь Cu расположена в IБ группе IV-го периода. Электронная конфигурация валентных орбиталей атомов химического элемента в основном состоянии 3d104s1, в ее случае наблюдается так называемый «проскок электрона». Наиболее устойчивая степень окисления меди равна +2, но встречаются также и соединения, содержащие медь в степени окисления +1. Медь образует оксиды Сu2О и СuО, которым соответствуют гидроксиды СuОН и Сu(ОН)2. Оксид и гидроксид меди (I) – Сu2О и СuОН обладают основными свойствами, в то время как оксид меди (II) СuО и гидроксид меди (II) Cu(ОН)2 являются амфотерными, с преобладанием основных свойств.

Цинк

Цинк Zn находится в IIБ группе IV-го периода. Электронная конфигурация валентных орбиталей атомов химического элемента в основном состоянии 3d104s2. Для цинка возможно только одна единственная степень окисления равная +2. Оксид цинка ZnO и гидроксид цинка Zn(ОН)2 обладают ярко выраженными амфотерными свойствами.

Хром

Химический элемент хром Cr находится в VIБ группе IV-го периода. Электронная конфигурация валентных орбиталей атомов хрома в основном состоянии 3d54s1 . Как и в случае с медью, здесь также наблюдается «проскок» электрона. Для хрома кроме нуля возможны три степени окисления: +2, +3 и  +6. Повышение степени окисления хрома приводит к возрастанию его кислотных свойств, или, что то же самое, уменьшению основных. Оксид хрома (II) СгО проявляет основные свойства – ему соответствует основание Сг(ОН)2, оксид хрома (III) Сг2О3 обладает амфотерными свойствами – ему соответствует амфотерный гидроксид хрома (III) Сг(ОН)3, а вот оксид хрома (VI) СгО3 — типичный кислотный оксид, ему соответствуют сразу две сильных кислоты — хромовая Н2СгО4, и дихромовая Н2Cr2О7. Наиболее устойчивой является степень окисления +3. Соединения, содержащие хром в степени окисления +2 являются сильными восстановителями, а соединения хрома (VI) — сильными окислителями.

Железо

Железо Fe находится в VІIIБ группе IV-го периода. Электронная конфигурация валентных орбиталей атомов химического элемента в основном состоянии 3d64s2. В соединениях железо может проявлять степени окисления равные +2, +3 и  +6. Наиболее устойчивой является степень окисления железа +3, соединения, содержащие железо в степени окисления +6 являются крайне сильными окислителями и относительно устойчивы только в сильнощелочных средах. Оксида и гидроксид железа (II) FeО и железа (II) Fe(ОН)2 обладают основными свойствами; в то время, как оксид железа (III) Fe2О3 и гидроксид железа (III) Fe(ОН)3 проявляют некоторые амфотерные свойства с преобладанием основных.


Общая характеристика неметаллов IV–VII групп в связи с их положением в Периодической системе химических элементов  Менделеева и особенностями строения их атомов

IV группа, главная подгруппа

Элементами-неметаллами IV группы главной подгруппы являются углерод и кремний. Атомы углерода имеют электронную конфигурацию валентных орбиталей 2s22p2, атомы кремния – 3s23p2. Наличие четырех валентных электронов обусловливает максимальную степень окисления атомов этих элементов +4. В том случае, когда в образовании химических связей участвуют только два неспаренных p-электрона (в невозбужденном состоянии), возможна также степень окисления +2. Минимальная степень окисления углерода и кремния равна –4 и обусловлена нехваткой четырех электронов до завершения внешнего уровня атомов этих элементов. В органических соединениях степень окисления углерода может принимать значения от –4 до +4.

Высшие оксиды углерода и кремния с общей формулой ЭО2 проявляют кислотные свойства, им соответствуют слабые кислоты Н2ЭО3 – угольная Н2СО3 и кремниевая H2SiO3 (последняя формула – условная, на самом деле существует несколько кремниевых кислот, состав которых описывается общей формулой SiO2 ⋅ nH2O). Кислотные свойства оксида углерода (IV) CO2 и угольной кислоты Н2СО3 выражены сильнее, чем у оксида кремния (IV) SiO2 и кремниевой кислоты H2SiO3 соответственно. В отличие от газообразного оксида углерода (IV) CO2 молекулярного строения оксид кремния (IV) SiO2 является твердым тугоплавким веществом с атомной кристаллической решеткой.

Углерод и кремний образуют также оксиды общего состава ЭО, в которых углерод и кремний проявляют степень окисления +2. Оксид углерода (II) СО и оксид кремния (II) SiO являются несолеобразующими.

Углерод и кремний образуют летучие водородные соединения – метан СН4 и силан SiH4. В отличие от метана, силан обладает значительно меньшей устойчивостью и легко окисляется кислородом воздуха, иногда с самовоспламенением.

V группа, главная подгруппа

Элементами-неметаллами V группы главной подгруппы являются азот N, фосфор P и мышьяк As. Атомы этих элементов содержат на внешнем уровне пять электронов и имеют электронную конфигурацию ns2np3. Высшая степень окисления атомов азота, фосфора и мышьяка в соединениях равна +5, а низшая составляет –3.

отличие от фосфора и мышьяка, атом азота не может проявлять валентность, равную V, так как не имеет d-подуровня на втором энергетическом электронном уровне. Высшая валентность азота равна IV, так как атом азота за счет неподеленной электронной пары может быть донором электронов и способен к образованию четвертой ковалентной связи по донорно-акцепторному механизму.

В ряду азот – фосфор – мышьяк с ростом заряда ядра увеличиваются радиусы атомов, уменьшается электроотрицательность и происходит ослабление неметаллических свойств.

Азот, фосфор и мышьяк образуют высшие оксиды общего состава Э2О5, которые, как и соответствующие им гидроксиды, проявляют кислотные свойства.

С водородом азот, фосфор и мышьяк образуют летучие водородные соединения состав ЭН3. Полярность и прочность связи Э–Н в ряду аммиак NH3 – фосфин PH3 – арсин AsH3 ослабевает, устойчивость соединений уменьшается.

VI группа, главная подгруппа

Элементами-неметаллами VI группы главной подгруппы являются кислород O, сера S, селен Se и теллур Te. Атомы этих элементов содержат на внешнем уровне шесть электронов и имеют электронную конфигурацию ns2np4. Высшая степень окисления атомов этих элементов, кроме кислорода, равна +6, а низшая составляет –2. Высшую степень окисления, равную +2, кислород проявляет в соединении с фтором – фториде кислорода OF2. Отрицательные степени окисления –2 и –1 сера, селен и теллур проявляют в соединениях с водородом и металлами.

В ряду кислород – сера – селен – теллур с ростом заряда ядра увеличиваются радиусы атомов, уменьшается электроотрицательность, происходит ослабление неметаллических свойств, окислительная способность простых веществ уменьшается, а восстановительная – возрастает.

Сера, селен и теллур образуют высшие оксиды общего состава ЭО3, которым соответствуют гидроксиды состава Н2ЭО4, проявляющие сильные кислотные свойства.

С водородом сера, селен и теллур образуют летучие водородные соединения состава Н2Э. Полярность и прочность связи Э–Н в летучих водородных соединениях ослабевает от Н2О к Н2Te. Вода Н2О является слабым амфотерным электролитом. Водные растворы летучих водородных соединений серы, селена и теллура проявляют кислотные свойства, причем сила кислот возрастает в ряду H2S – H2Se – H2Te.

VII группа, главная подгруппа

Элементы VII группы главной подгруппы, называемые галогенами, фтор F, хлор Cl, бром Br и иод I, – типичные неметаллы. Атомы этих элементов содержат на внешнем уровне семь электронов и имеют электронную конфигурацию ns2np5. Высшая степень окисления атомов этих элементов, кроме фтора, равна +7, а низшая составляет –1.

В пределах каждого периода галогены обладают наибольшей электроотрицательностью, при этом фтор — самый электроотрицательный из всех элементов. Во всех соединениях фтор имеет степень окисления –1.

В ряду фтор – хлор – бром – иод с ростом заряда ядра увеличиваются радиусы атомов, уменьшается электроотрицательность, происходит ослабление неметаллических свойств.

Галогены образуют простые вещества – двухатомные молекулы состава Г2, в которых атомы соединены друг с другом одинарной связью.

В ряду галогенов от фтора к иоду температуры плавления и кипения, а также интенсивность окраски простых веществ увеличиваются. Фтор F2 – газ бледно-зеленого цвета, хлор Cl2 – газ желто-зеленого цвета, бром Br2 – темно-коричневая жидкость, иод I2 – кристаллическое вещество темно-серого цвета с фиолетовым оттенком и металлическим блеском.

Окислительная способность галогенов в ряду F2 – Cl2 – Br2 – I2 уменьшается, что наиболее ярко проявляется в том, что каждый последующий галоген может вытеснять предыдущий из соответствующих галогенидов, например:

Сl2 + 2NaBr = 2NaCl + Br2
Br2 + 2NaI = 2NaBr + I2

Галогены, кроме фтора, образуют высшие оксиды состава Э2О7, проявляющие кислотные свойства. Им соответствуют сильные кислоты состава НЭО4.

С водородом фтор, хлор, бром и иод образуют летучие водородные соединения состава НЭ. Полярность и прочность связи Э–Н в летучих водородных соединениях ослабевает от НF к НI. Водные растворы летучих водородных соединений галогенов проявляют кислотные свойства, причем сила кислот возрастает в ряду HF – HCl – HBr – HI.